If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-5x-500=0
a = 2; b = -5; c = -500;
Δ = b2-4ac
Δ = -52-4·2·(-500)
Δ = 4025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4025}=\sqrt{25*161}=\sqrt{25}*\sqrt{161}=5\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5\sqrt{161}}{2*2}=\frac{5-5\sqrt{161}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5\sqrt{161}}{2*2}=\frac{5+5\sqrt{161}}{4} $
| -5p+3*(3p-1)=0 | | 5(m+16)=-3m | | -3x-3*(3x-9)=3 | | 1/2(x+3)(3/4x-3)-3/8x^2=12 | | 23-18=n | | 8/x=9/28 | | 4/17=x/35 | | -41+3n=-29-18 | | (4x+6)°(9x+6)+90=180 | | (5+x)/20+5/25=1 | | (4x+6)°(9x+6)+x=180 | | 6(f-6)=4(f-3) | | 30+x+12=3x+2 | | 5x^2+16x-10=0 | | 2-3*(1-x)=(2x+1)*4 | | 45r2-150r+125=0 | | 6m+4=4m+8 | | 1.5-11=x-1 | | 0.1/x+8=0.6/x-9 | | 5x−10=0 | | 6x−18=30 | | 2c−–2=16 | | x−8=48 | | 4. 2x–4+3x=41 | | 7x-3x²=4x | | 6x–3=4x+5 | | y*5=2 | | 5x-18=6x+21 | | 16(2x+10)=64 | | 5n+(-13)=17 | | -15=-5d+40 | | 4.2x–4+3x=41 |